Journal Article
Research Support, N.I.H., Intramural
Add like
Add dislike
Add to saved papers

FAN1 protects against repeat expansions in a Fragile X mouse model.

DNA Repair 2018 September
The Fragile X-related disorders (FXDs) are members of a large group of human neurological or neurodevelopmental conditions known as the Repeat Expansion Diseases. The mutation responsible for all of these diseases is an expansion in the size of a disease-specific tandem repeat tract. However, the underlying cause of this unusual mutation is unknown. Genome-wide association studies have identified single nucleotide polymorphisms (SNPs) in the vicinity of the FAN1 (MIM* 613534) gene that are associated with variations in the age at onset of a number of Repeat Expansion Diseases. FAN1 is a nuclease that has both 5'-3' exonuclease and 5' flap endonuclease activities. Here we show in a model for the FXDs that Fan1-/- mice have expansions that, in some tissues including brain, are 2-3 times as extensive as they are in Fan1+/+ mice. However, no effect of the loss of FAN1 was apparent for germ line expansions. Thus, FAN1 plays an important role in protecting against somatic expansions but is either not involved in protecting against intergenerational repeat expansions or is redundant with other related enzymes. However, since loss of FAN1 results in increased expansions in brain and other somatic tissue, FAN1 polymorphisms may be important disease modifiers in those Repeat Expansion Diseases in which somatic expansion contributes to age at onset or disease severity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app