Add like
Add dislike
Add to saved papers

Preparation of Dimethyl Disulfide Adducts from the Mono-Trans Octadecadienoic Acid Methyl Esters.

Lipids 2018 July 11
The dimethyl disulfide (DMDS) adduct method is one of the more effective methods for determining double bond positions of dienoic acid. The DMDS method can be simply used to obtain the characteristic ions in which cleavage occurs between the methylthio group-added double-bond carbons as can be seen in the mass spectrum obtained using gas chromatography/electron ionization-mass spectrometry. In the case of the methylene-interrupted di-cis type and di-trans type dienoic acid, the DMDS addition reaction only occurs at one double-bond position, and cannot occur at the remaining double-bond position due to steric hindrance. As a result, two types of adducts are produced in the addition reaction. However, in the case of the methylene-interrupted mono-trans (mono-cis) type dienoic acid, the DMDS addition reaction only occurs at the cis-double bond. As a result, one type of adduct is produced in the addition reaction. In this report, we investigate the cause of the reaction selectivity by focusing on the addition reaction time.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app