Add like
Add dislike
Add to saved papers

Mixed Ionic-Electronic Conduction in NiFe 2 O 4 -Ce 0.8 Gd 0.2 O 2-δ Nanocomposite Thin Films for Oxygen Separation.

ChemSusChem 2018 August 23
NiFe2 O4 -Ce0.8 Gd0.2 O2-δ (NFO/CGO) nanocomposite thin films were prepared by simultaneously radio-frequency (RF) magnetron sputtering of both NFO and CGO targets. The aim is the growth of a CO2 -stable composite layer that combines the electronic and ionic conduction of the separate NFO and the CGO phases for oxygen separation. The effect of the deposition temperature on the microstructure of the film was studied to obtain high-quality composite thin films. The ratio of both phases was changed by applying different power to each ceramic target. The amount of each deposited phase as well as the different oxidation states of the nanocomposite constituents were analyzed by means of X-ray photoelectron spectroscopy (XPS). The transport properties were studied by conductivity measurements as a function of temperature and pO2 . These analyses enabled (1) selection of the best deposition temperature (400 °C), (2) correlation of the p-type electronic behavior of the NFO phase with the hole hopping between Ni3+ -Ni2+ , and (3) following the conductivity behavior of the grown composite layer (prevailing ionic or electronic character) attained by varying the amount of each phase. The sputtered layer exhibited high ambipolar conduction and surfaceexchange activity. A 150 nm-thick nanograined thin film was deposited on a 20 μm-thick Ba0.5 Sr0.5 Co0.8 Fe0.2 O3-δ asymmetric membrane, resulting in up to 3.8 mL min-1  cm-2 O2 permeation at 1000 °C under CO2 atmosphere.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app