Add like
Add dislike
Add to saved papers

Shape-controlled electrodeposition of single Pt nanocrystals onto carbon nanoelectrodes.

Faraday Discussions 2018 October 2
In this paper, we report the electrosynthesis and characterization of individual, shape-controlled Pt nanocrystals (NCs) electrodeposited on carbon nanoelectrodes (CNEs). Single Pt NCs were deposited onto the CNEs using an empirically developed square-wave potential program. Characterization by scanning electron microscopy indicates that the sizes of Pt NCs are remarkably reproducible (relative standard deviation = 6%). Electrochemically active surface areas, determined by Cu underpotential deposition and H adsorption/desorption analyses, are also reproducible. Selected area electron diffraction indicates that each Pt NC is comprised of just one single crystal (no grain boundaries). Although different square-wave potential programs lead to different types of crystals, the Pt NCs discussed here have a concave hexoctahedral geometry bound primarily by {13 6 2} surface facets. The results in this report represent a first step toward our ultimate goal of studying electrocatalysis at individual, shape-controlled, single-crystal nanoparticles.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app