Add like
Add dislike
Add to saved papers

Age-dependent alpha-synuclein accumulation and aggregation in the colon of a transgenic mouse model of Parkinson's disease.

Background: Parkinson's disease (PD) is one of the most common neurodegenerative diseases, neuropathologically characterized by misfolded protein aggregation, called Lewy bodies and Lewy neurites. PD is a slow-progressive disease with colonic dysfunction appearing in the prodromal stage and lasting throughout the course of the disease.

Methods: In order to study PD pathology in the colon, we examined the age-dependent morphological and pathological changes in the colon of a PD mouse model expressing human wildtype α-synuclein (α-syn) fused with the green fluorescent protein (GFP), under the endogenous mouse α-syn promoter.

Results: We observed an age-dependent progressive expression and accumulation of α-syn-GFP in the enteric neurons of Meissner's (submucosal) and Auerbach's (myenteric) plexuses of the colon. Additionally, the phosphorylation of α-syn at serine 129 also increased with age and the aggregation of α-syn-GFP coincided with the appearance of motor deficits at 9 months of age. Furthermore, α-syn (-GFP) distinctly co-localized with different subtypes of neurons, as identified by immunohistochemical labeling of vasoactive intestinal peptide (VIP), neuronal nitric oxide synthase (nNOS), and calretinin.

Conclusions: Our results show the development of α-syn pathology in the enteric neurons of the colon in a PD mouse model, which coincide with the appearance of motor deficits. Our mouse model possesses the potential and uniqueness for studying PD gastrointestinal dysfunction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app