Add like
Add dislike
Add to saved papers

Programming DNA origami assembly for shape-resolved nanomechanical imaging labels.

Atomic force microscopy (AFM)-based nanomechanical imaging provides a high-resolution approach for imaging biomolecules with nanometer resolution. Nevertheless, the lack of appropriate nanomechanical labels poses a limit to biological applications. Here, we describe how to generate a set of shape-resolved nanomechanical labels by exploiting self-assembled DNA origami technology. By designing 'mediator' strands that can hybridize with both the origami shapes and the target DNA, these origami shape IDs can be used to site-specifically label genomic DNA with high efficiency and high throughput. When DNA origami shape IDs are used to label target sequences containing two single-nucleotide polymorphisms (SNPs), this approach is capable of differentiating adjacent labeling sites separated by only 30 nucleobases (~10 nm) under AFM imaging. This resolution is a threefold improvement of that which can be obtained with imaging-based genotyping using super-resolution imaging. We further demonstrate how to use origami shape IDs for high-resolution genotyping of SNPs in disease-associated genes in patients. The entire protocol takes ~2 d to complete.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app