Add like
Add dislike
Add to saved papers

Increased Expression of the YPEL3 Gene in Human Colonic Adenocarcinoma Tissue and the Effects on Proliferation, Migration, and Invasion of Colonic Adenocarcinoma Cells In Vitro via the Wnt/b-Catenin Signaling Pathway.

BACKGROUND The aim of this study was to investigate the effects of the expression of the YPEL3 gene in colonic adenocarcinoma cells grown in vitro and in colonic adenocarcinoma tissue from patients treated by surgical resection. MATERIAL AND METHODS The study included 108 patients diagnosed with primary colon cancer (Stages I to IV). The expression of the YPEL3 gene in colonic adenocarcinoma tissue and adjacent normal colonic tissue was detected by real-time quantitative PCR (qRT-PCR). The normal human colonic cell line CCD-1Co and colorectal adenocarcinoma cell lines HT-29 and HCT-8 were induced to overexpress the YPEL3 gene, and the effects on cell proliferation, migration, and invasion of colonic adenocarcinoma cells were investigated by the Cell Counting Kit-8 (CCK-8) assay, a transwell migration assay, and a transwell invasion assay, respectively. The effects of YPEL3 gene overexpression on the Wnt/β-catenin signaling pathway were detected by Western blot. RESULTS Increased expression levels of the YPEL3 gene were present in colon adenocarcinoma tissue compared with adjacent normal colonic tissue in 98 of 108 patients. Overexpression of the YPEL3 gene inhibited the proliferation, migration, and invasion of the HT-29 and HCT-8 colonic adenocarcinoma cells, and inactivated the Wnt/β-catenin signaling pathway; treatment with the Wnt agonist, CAS 853220-52-7, reduced the inhibitory effects of YPEL3 overexpression on proliferation, migration, and invasion in vitro. CONCLUSIONS Expression of the YPEL3 gene was upregulated in human colonic adenocarcinoma tissue, and also inhibited the proliferation, migration, and invasion of colonic adenocarcinoma cells in vitro by inactivating the Wnt/β-catenin signaling pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app