Add like
Add dislike
Add to saved papers

Optimized Electrostatic Linear Ion Trap for Charge Detection Mass Spectrometry.

In charge detection mass spectrometry (CDMS), ions are passed through a detection tube and the m/z ratio and charge are determined for each ion. The uncertainty in the charge and m/z determinations can be dramatically reduced by embedding the detection tube in an electrostatic linear ion trap (ELIT) so that ions oscillate back and forth through the detection tube. The resulting time domain signal can be analyzed by fast Fourier transforms (FFTs). The ion's m/z is proportional to the square of the oscillation frequency, and its charge is derived from the FFT magnitude. The ion oscillation frequency is dependent on the physical dimensions of the trap as well as the ion energy. A new ELIT has been designed for CDMS using the central particle method. In the new design, the kinetic energy dependence of the ion oscillation frequency is reduced by an order of magnitude. An order of magnitude reduction in energy dependence should have led to an order of magnitude reduction in the uncertainty of the m/z determination. In practice, a factor of four improvements was achieved. This discrepancy is probably mainly due to the trajectory dependence of the ion oscillation frequency. The new ELIT design uses a duty cycle of 50%. We show that a 50% duty cycle produces the lowest uncertainty in the charge determination. This is due to the absence of even-numbered harmonics in the FFT, which in turn leads to an increase in the magnitude of the peak at the fundamental frequency. Graphical Abstract ᅟ.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app