Add like
Add dislike
Add to saved papers

Inhalation exposure and potential health risk estimation of lanthanides elements in PM 2.5 associated with rare earth mining areas: a case of Baotou city, northern China.

Particulate pollution, especially PM2.5 (particles with an aerodynamic equivalent diameter of 2.5 μm or less), has received increased attention in China recently. In this study, PM2.5 samples were collected in August 2013 and April 2014 from different regions of Baotou, the largest rare earth elements (REEs) processing city in northern China. The concentrations and distribution patterns of REEs in PM2.5 were analyzed, and the inhalation exposure to REEs associated with PM2.5 was assessed. The results showed that the REEs levels were 56.9 and 15.3 ng m-3 in August 2013 and April 2014, respectively. These values are much higher than those in non-REEs mining areas. The distribution patterns of REEs exhibited LREE enrichment. The Eu and Ce anomalies displayed slightly positive and negative values, respectively, which were in accordance with the background soil and ore. The average daily intake amounts of REEs for population through inhalation exposure of PM2.5 in Baotou were in the range of 5.09 × 10-7 to 2.25 × 10-5 mg kg-1 day-1 .

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app