Journal Article
Review
Add like
Add dislike
Add to saved papers

Surface Modifications of Nanoparticles for Stability in Biological Fluids.

Materials 2018 July 7
Due to the high surface: volume ratio and the extraordinary properties arising from the nanoscale (optical, electric, magnetic, etc.), nanoparticles (NPs) are excellent candidates for multiple applications. In this context, nanoscience is opening a wide range of modern technologies in biological and biomedical fields, among others. However, one of the main drawbacks that still delays its fast evolution and effectiveness is related to the behavior of nanomaterials in the presence of biological fluids. Unfortunately, biological fluids are characterized by high ionic strengths which usually induce NP aggregation. Besides this problem, the high content in biomacromolecules—such as lipids, sugars, nucleic acids and, especially, proteins—also affects NP stability and its viability for some applications due to, for example, the formation of the protein corona around the NPs. Here, we will review the most common strategies to achieve stable NPs dispersions in high ionic strength fluids and, also, antifouling strategies to avoid the protein adsorption.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app