Journal Article
Review
Add like
Add dislike
Add to saved papers

Toxicity of environmentally-relevant concentrations of arsenic on developing T lymphocyte.

Arsenic is a ubiquitous environmental contaminant that exists in many inorganic and organic forms. In particular, arsenite is known to induce immunotoxicity in humans and animals. There are still major gaps in our understanding of the mechanism(s) of the immunotoxicity induced by arsenic at environmentally-relevant concentrations. T cells are an essential part of the immune system required for host resistance to infections and protection from cancer. Developing T cells in the thymus have been shown to be particularly prone to arsenite-induced toxicity at low concentrations. Suppression of DNA repair proteins and oxidative stress have been identified as a mechanism of genotoxicity that occurs at low to moderate concentrations. Inhibition of the IL-7 signaling pathway was thought to be responsible for the non-genotoxicity induced by low to moderate doses of arsenic. Interestingly, T cells at different stages of their development had distinct sensitivities to arsenite, which was regulated by arsenite exporters. The current evidence strongly suggests that low to moderate doses of arsenic induces toxic effects in the developing T cells and accumulates to highest levels in the early cells that are least capable to pump out arsenic, which may be the mechanism of the high arsenic sensitivity. Therefore, quantification of the exposure levels should be encouraged in future arsenic toxicity studies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app