Add like
Add dislike
Add to saved papers

Differentially expressed genes in response to amitraz treatment suggests a proposed model of resistance to amitraz in R. decoloratus ticks.

The widespread geographical distribution of Rhipicephalus decoloratus in southern Africa and its ability to transmit the pathogens causing redwater, gallsickness and spirochaetosis in cattle makes this hematophagous ectoparasite of economic importance. In South Africa, the most commonly used chemical acaricides to control tick populations are pyrethroids and amitraz. The current amitraz resistance mechanism described in R. microplus, from South Africa and Australia, involves mutations in the octopamine receptor, but it is unlikely that this will be the only contributing factor to mediate resistance. Therefore, in this study we aimed to gain insight into the more complex mechanism(s) underlying amitraz resistance in R. decoloratus using RNA-sequencing. Differentially expressed genes (DEGs) were identified when comparing amitraz susceptible and resistant ticks in the presence of amitraz while fed on bovine hosts. The most significant DEGs were further analysed using several annotation tools. The predicted annotations from these genes, as well as KEGG pathways potentially point towards a relationship between the α-adrenergic-like octopamine receptor and ionotropic glutamate receptors in establishing amitraz resistance. All genes with KEGG pathway annotations were further validated using RT-qPCR across all life stages of the tick. In susceptible ticks, the proposed model is that in the presence of amitraz, there is inhibition of Ca2+ entry into cells and subsequent membrane hyperpolarization which prevents the release of neurotransmitters. In resistant ticks, we hypothesize that this is overcome by ionotropic glutamate receptors (NMDA and AMPA) to enhance synaptic transmission and plasticity in the presence of neurosteroids. Activation of NMDA receptors initiates long term potentiation (LTP) which may allow the ticks to respond more rapidly and with less stimulus when exposed to amitraz in future. Overactivation of the NMDA receptor and excitotoxicity is attenuated by the estrone, NAD+ and ATP hydrolysing enzymes. This proposed pathway paves the way to future studies on understanding amitraz resistance and should be validated using in vivo activity assays (through the use of inhibitors or antagonists) in combination with metabolome analyses.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app