JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Meganuclease targeting of PCSK9 in macaque liver leads to stable reduction in serum cholesterol.

Nature Biotechnology 2018 September
Clinical translation of in vivo genome editing to treat human genetic diseases requires thorough preclinical studies in relevant animal models to assess safety and efficacy. A promising approach to treat hypercholesterolemia is inactivating the secreted protein PCSK9, an antagonist of the LDL receptor. Here we show that single infusions in six non-human primates of adeno-associated virus vector expressing an engineered meganuclease targeting PCSK9 results in dose-dependent disruption of PCSK9 in liver, as well as a stable reduction in circulating PCSK9 and serum cholesterol. Animals experienced transient, asymptomatic elevations of serum transaminases owing to the formation of T cells against the transgene product. Vector DNA and meganuclease expression declined rapidly, leaving stable populations of genome-edited hepatocytes. A second-generation PCSK9-specific meganuclease showed reduced off-target cleavage. These studies demonstrate efficient, physiologically relevant in vivo editing in non-human primates, and highlight safety considerations for clinical translation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app