Add like
Add dislike
Add to saved papers

A Highly Compensated Interferometer for Biochemical Analysis.

ACS Sensors 2018 August 25
Here we report an improved interferometric sensing approach that facilitates high sensitivity nanovolume refractive index (RI) measurements and molecular interaction assays without a temperature controller. The compensated backscattering interferometer (CBSI) is based on a helium-neon (He-Ne) laser, a microfluidic chip, and a CCD array. The CBSI enables simultaneous differential RI measurements within nanoliter volumes, at a compensation level of ca. 5 × 10-8 RIU in the presence of large thermal perturbations (8 °C). This level of d n/d T compensation is enabled by elongating the laser beam along the central axis of the microfluidic channel and measuring the difference in positional shift of interference patterns from two adjacent regions of the channel. By separating two solutions by an air gap or oil droplet, CBSI can discriminate the difference in RI for the sample and reference at a detection limit of 7 × 10-7 RIU in the absence of electronic filtering. At this level of ΔRI sensitivity, it is possible to perform label-free, free-solution biochemical assays at the 10s of nM level without the typical high-resolution temperature control needed in conventional interferometers. Here we illustrate the effective use of CBSI by quantifying the binding affinities for mannose-concanavalin A and Ca2+ -recoverin interactions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app