Add like
Add dislike
Add to saved papers

Electrochemical Deposition: An Advanced Approach for Templated Synthesis of Nanoporous Metal Architectures.

Well-constructed porous materials take an essential role in a wide range of applications, including energy conversion and storage systems, electrocatalysis, photocatalysis, and sensing. Although the tailored design of various nanoarchitectures has made substantial progress, simpler preparation methods are compelled to meet large-scale production requirements. Recently, advanced electrochemical deposition techniques have had a significant impact in terms of precise control upon the nanoporous architecture (i.e., pore size, surface area, pore structure, etc.), enabling access to a wide range of compositions. In this Account, we showcase the uniqueness of electrochemical deposition techniques, detail their implementation toward the synthesis of novel nanoporous metals, and finally outline the future research directions. Nanoporous metallic structures are attractive in that they can provide high surface area and large pore volume, easing mass transport of reactants and providing high accessibility to catalytically active metal surface. The great merit of the electrochemical deposition approach does not only lie in its versatility, being applicable to a wide range of compositions, but also in the nanoscale precision it affords when it comes to crystal growth control, which cannot be easily achieved by other bottom-up or top-down approaches. In this Account, we describe the significant progress made in the field of nanoporous metal designed through electrochemical deposition approaches using hard templates (i.e., porous silica, 3D templates of polymer and silica colloids) and soft templates (i.e., lyotropic liquid crystals, polymeric micelles). In addition, we will point out how it accounts for precise control over the crystal growth and describe the unique physical and chemical properties emerging from these novel materials. Up to date, our group has reported the synthesis of several nanoporous metals and alloys (e.g., Cu, Ru, Rh, Pd, Pt, Au, and their corresponding alloys) under various conditions through electrochemical deposition, while investigating their various potential applications. The orientation of the channel structure, the composition, and the nanoporosity can be easily controlled by selecting the appropriate surfactants or block copolymers. The inherent properties of the final product, such as framework crystallinity, catalytic activity, and resistance to oxidation, are depending on both the composition and pore structure, which in turn require suitable electrochemical conditions. This Account is divided into three main sections: (i) a history of electrochemical deposition using hard and soft templates, (ii) a description of the important mechanisms involved in the preparation of nanoporous materials, and (iii) a conclusion and future perspectives. We believe that this Account will promote a deeper understanding of the synthesis of nanoporous metals using electrochemical deposition methods, thus enabling new pathways to control nanoporous architectures and optimize their performance toward promising applications such as catalysis, energy storage, sensors, and so forth.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app