Add like
Add dislike
Add to saved papers

Characterization of Polymeric Nanoparticle Dispersions for biomedical applications: Size, Surface Charge and Stability.

In the last decades, nanoparticles intended for biomedical applications have gained increased attention due to the advantages they represent among the current diagnostic and therapeutic methods. However, the translation of nanomaterials laboratory results to human therapies is limited, mainly due to incomplete characterization of nanosystem properties, before preclinical studies. In this context, this review aims to summarize the main physicochemical characterization techniques of nanoparticles in a liquid dispersion, required in their design steps; which is of utmost importance for successful applications. One of the key physicochemical parameters of nanomaterials is size. To assess nanoparticles size, a wide revision of light scattering and microscopic techniques is reported here, some of them being also useful for determining nanomaterial morphology. The determination of nanosystem surface charge is also reported, because it is also a key parameter that will influence their interaction with biological components. In addition, determination of nanomaterials stability, which is important in terms of storage and use, is described. In conclusion, this review will be a useful support to find the appropriate techniques for an appropriate nanoparticle physicochemical preclinical characterization.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app