Add like
Add dislike
Add to saved papers

Upregulation of Connexin-43 is Critical for Irradiation-induced Neuroinflammation.

BACKGROUND: Radiation therapy is widely used for the treatment of pituitary adenomas. Unfortunately, it might raise the risk of ischemic stroke, with neuroinflammation being a major pathological process. Astrocytes are the most abundant cell type in the central nervous system and have been reported for playing important roles in ischemic stroke.

OBJECTIVE: Here we studied how γ-radiation would introduce astrocytes into a detrimental state for neuroinflammation and provide new theory evidence and target for the clinical management of inflammation- related neural damage after radiation-induced ischemic stroke.

METHOD: HA-1800 cells were treated with γ-radiation and then the protein and mRNA levels of Connexin (Cx)-43 were evaluated by western and q-PCR. The culture supernatant was collected and the concentrations of the inflammatory factors were determined by ELISA. MiRNA complementary to Cx-43 was designed through the online tools.

RESULTS: Cx-43 is upregulated in the treatment of γ-radiation in astrocytes and γ-radiation introduced the detrimental function of astrocytes: cell viability was reduced while the apoptotic cells were increased. Inflammatory factors like tumor necrosis factor alpha, interferon gamma, interleukin-6, interleukin 1-beta were dramatically up-regulated by the irradiation. MiR-374a rescued irradiation induced Cx-43 up-regulation of astrocytes and eliminated detrimental function triggered by γ-radiation.

CONCLUSION: Cx-43 expression level may play an important role in the inflammation-related neural damage after irradiation-induced ischemic stroke.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app