Add like
Add dislike
Add to saved papers

Study of the Partial Substitution of Pb by Sn in Cs-Pb-Sn-Br Nanocrystals Owing to Obtaining Stable Nanoparticles with Excellent Optical Properties.

Halide perovskites are revolutionizing the photovoltaic and optoelectronic fields with outstanding performances obtained in a remarkably short time. However, two major challenges remain: the long-term stability and the Pb content, due to its toxicity. Despite the great effort carried out to substitute the Pb by a less hazardous element, lead-free perovskite still remains more unstable than lead-containing perovskites and presents lower performance as well. In this work, we demonstrate the colloidal preparation of Cs-Pb-Sn-Br nanoparticles (NPs) where Sn is incorporated up to 18.8%. Significantly, we have demonstrated that the partial substitution of Pb by Sn does not produce a deleterious effect in their optical performance in terms of photoluminescence quantum yield (PLQY). We observed for the first time a positive effect in terms of enhancement of PLQY when Sn partially substitutes Pb in a considerable amount (i.e., higher than 5%). PLQYs as high as 73.4% have been obtained with a partial Pb replacement of 7% by Sn. We present a systematic study of the synthesis process in terms of different growth parameters (i.e., precursor concentration, time, and temperature of reaction) and how they influence the Sn incorporation and the PLQY. This high performance and long-term stability is based on a significant stabilization of Sn2+ in the NPs for several months, as determined by XPS analysis, and opens an interesting way to obtain less Pb-containing perovskite NPs with excellent optoelectronic properties.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app