Add like
Add dislike
Add to saved papers

pH-sensitive radiolabeled and superfluorinated ultra-small palladium nanosheet as a high-performance multimodal platform for tumor theranostics.

Biomaterials 2018 October
Radiolabeled nanomaterials, especially those with ultra-small structures, have been the research focus in recent years, and thus may open up new prospects for clinical diseases theranostics. Herein, fluorinated Pd nanosheets labeled with Gd or radionuclides are developed as multimodal platforms for tumor theranostics. These nanomaterials decorated by functional polyethylene glycol demonstrate ultrahigh 19 F MRI signal, ultrasmall size and good dispersibility. These ultrasmall materials exhibit good biocompatibility and easily to be modified for multimodal imaging (SPECT/MRI/PAI) by assembling the functional groups like building blocks. Furthermore, with high accumulation in tumor sites, under the guidance of multimodal imaging, combined photothermal therapy and radiotherapy are performed and synergistic effects are obtained. By comparing the in vivo behaviors of nanostructures labeled by different nuclides, the present study suggests the pH-sensitive radioiodinated Pd nanosheet which has unexpected T/NT ratio (>4-fold tumor-to-muscle ratio) in SPECT imaging and solves the critical high background issue of nanoprobes, could improve diagnostic accuracy and guide combination therapy. In summary, this functionalized nanoplatform with promising imaging and therapeutic efficacy has great potential for precision theranostic nanomedicines.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app