Add like
Add dislike
Add to saved papers

A novel biocompatible Ni II tethered moiety as a glucose uptake agent and a hit against methicillin-resistant Staphylococcus aureus.

In the efforts to develop a biocompatible transition metal complex as a drug alike for some of the prevailing non-communicable diseases (NCDs) and communicable diseases (CDs), a novel binuclear NiII compound [{NiII (hpdbal-sbdt)}2 ] (2) has been synthesized by the reaction of Ni(OAc)2 .4H2 O and H2 hpdbal-sbdt (1) [1 is a dibasic tridentate ONS2- donor Schiff base ligand obtained by the condensation of 2-hydroxy-5-(phenyldiazenyl)benzaldehyde (Hhpdbal) and S-benzyldithiocarbazate (Hsbdt)]. Both ligand 1 and compound 2 were structurally characterized in the solid and solution state using various spectroscopic techniques like ATIR, 1 H NMR, 13 C NMR, TGA, FESEM, EDS and CHNS analysis. The antidiabetic activity of H2 hpdbal-sbdt (1) and [{NiII (hpdbal-sbdt)}2 ] (2) were assessed using 2-NBDG uptake assay. The assay results showed 85% and 95% of fluorescent glucose uptake by insulin resistant HePG2 cells treated with compounds 1 and 2 respectively. The 2-NBDG uptake by the cells treated with the compound 2 was observed to be comparable to the standard antidiabetic drug metformin. Compounds 1 and 2 were also tested against five bacterial and two fungi strains in order to evaluate pathogen killing activity. Compound 2 showed significant inhibitory action towards the methicillin-resistant Staphylococcus aureus (MRSA) strain with an MIC value of 2 μg/mL whereas the ligand 1 was found to be inactive. Furthermore, the interactive nature of compound 2 with a model serum carrier protein bovine serum albumin (BSA) was studied using a multi-spectroscopic approach which provided an insight into the nature and extent of binding, conformational changes and the quenching of amino acid residues of the protein.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app