Add like
Add dislike
Add to saved papers

Identification of an intercellular cell adhesion molecule-1 homologue from grass carp: Evidence for its involvement in the immune cell adhesion in teleost.

Intercellular cell adhesion molecule-1 (ICAM-1) is a single-chain transmembrane glycoprotein which plays key roles in transendothelial migration of leukocytes and interaction between antigen presenting cells and T cells. In teleost, information of cell adhesion-related molecules is still lacking. In this study, we identified a gene from grass carp sharing similar exon and intron organization with human ICAM-1. Cloning and in silico analysis of its homologues in zebrafish and other two cyprinid fishes, respectively demonstrated the existence of the gene in these fishes. Moreover, the molecular features of these genes in fishes were conserved compared with human ICAM-1. In grass carp, the transcripts of this gene were detected with high levels in heart and liver and its mRNA expression in headkidney leukocytes was induced by Il-1β. Overexpression of this molecule in COS-7 cells could increase the adhesion of the cells with grass carp peripheral blood lymphocytes (PBLs), and the adhesion was further enhanced by lipopolysaccharide stimulation on PBLs. Further studies revealed that the mRNA levels of lymphocyte function-associated antigen-1, a ligand for ICAM-1, were much higher in the PBLs adhering to the COS-7 cells with overexpressing this molecule than in the PBLs alone. These results collectively showed that the newly cloned cDNA encodes grass carp intercellular cell adhesion molecule-1 (Icam-1) and it can mediate the adhesion of PBLs. This provides functional evidence for the existence of Icam-1 in teleost and will facilitate investigation on the transendothelial migration of leukocytes in fish species.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app