Add like
Add dislike
Add to saved papers

Imaging Mass Microscopy of Kidneys from Azithromycin-Treated Rats with Phospholipidosis.

Drug-induced phospholipidosis is a lysosomal storage disorder characterized by the excess accumulation of tissue phospholipids. Although azithromycin can be used to induce phospholipidosis, no experimental studies evaluating the relationship between drug accumulation and phospholipid localization have been performed. In this study, azithromycin was orally administered to rats for 7 days, and the relationship between drug and phospholipid accumulation was performed using imaging mass microscopy. The administration of azithromycin induced tubular epithelial vacuolation in the inner stripe of the outer medulla of the kidney, consistent with the lamellar bodies that are typical manifestations of drug-induced phospholipidosis. Azithromycin and phospholipid tissue levels were extensively elevated in the kidneys of azithromycin-treated rats. Imaging mass microscopy revealed that both azithromycin and its metabolites were found in the kidneys of azithromycin-treated rats but not in control animals. The vacuolated areas of the kidneys were primarily found in the inner stripe of the outer medulla, consistent with the areas of high azithromycin concentration. Azithromycin was colocalized with several phospholipids-phosphatidylinositol (18:0/20:4), phosphatidylethanolamine (18:0/20:4 and 16:0/20:4), and possibly didocosahexaenoyl (C22:6)-bis(monoacylglycerol) phosphate, a putative biomarker of drug-induced phospholipidosis. In summary, we found correlations between regions of kidney damage and the accumulation of azithromycin, its metabolites, and phospholipids using imaging mass microscopy. Such analyses may help reveal the mechanism and identify putative biomarkers of drug-induced phospholipidosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app