Add like
Add dislike
Add to saved papers

Population pharmacokinetics of valproic acid in epileptic children: Effects of clinical and genetic factors.

Valproic acid (VPA) is a first-line anti-epileptic drug that is used in the treatment of generalized and partial seizures. Gene variants had been proved to influence the pharmacokinetics (PK) of VPA and contribute to its inter-individual variability (IIV). The aim of this study was to systematically investigate the effects of candidate gene variants (CYPs, UGTs, ABC transporters, and nuclear receptors) on VPA PK in Chinese children with epilepsy. A total of 1065 VPA serum trough concentrations at steady state were collected from 264 epileptic pediatric patients aged 3 months to 16 years. The population pharmacokinetic (PPK) model was developed using a nonlinear mixed effects modelling (NONMEM) approach. For the final PPK model, the oral clearance (CL/F) of VPA was estimated to be 0.259 L/h with IIV of 13.3%. The estimates generated by NONMEM indicated that the VPA CL/F was significantly influenced by patient body weight (increased by an exponent of 0.662), co-administration with carbamazepine (increased CL/F by 22%), and daily dose of VPA (increased by an exponent of 0.22). CL/F in patients with the LEPR rs1137101 variant (668 AG and GG genotypes) was much lower than in patients with the AA genotype (17.8% and 22.6% lower, respectively). However, none of the CYPs or UGTs gene variants was found to influence the PK of VPA in this study. Evaluation by bootstrap and normalized prediction distribution error (NPDE) showed that the final model was stable. The predictive performance was evaluated by goodness-of-fit (GOF) plots and visual predictive checks (VPC), and the results indicated satisfactory precision. Our model suggests a correlation between VPA CL/F and LEPR rs1137101 variants, which might be beneficial in the context of individual dose optimization.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app