Add like
Add dislike
Add to saved papers

Targeted Elimination of Tumorigenic Human Pluripotent Stem Cells Using Suicide-Inducing Virus-like Particles.

ACS Chemical Biology 2018 August 18
Sensitization to prodrugs via transgenic expression of suicide genes is a leading strategy for the selective elimination of potentially tumorigenic human pluripotent stem cells (hPSCs) in regenerative medicine, but transgenic modification poses safety risks such as deleterious mutagenesis. We describe here an alternative method of delivering suicide-inducing molecules explicitly to hPSCs using virus-like particles (VLPs) and demonstrate its use in eliminating undifferentiated hPSCs in vitro. VLPs were engineered from Qβ bacteriophage capsids to contain enhanced green fluorescent protein (EGFP) or cytosine deaminase (CD) and to simultaneously display multiple IgG-binding ZZ domains. After labeling with antibodies against the hPSC-specific surface glycan SSEA-5, EGFP-containing particles were shown to specifically bind undifferentiated cells in culture, and CD-containing particles were able to eliminate undifferentiated hPSCs with virtually no cytotoxicity to differentiated cells upon treatment with the prodrug 5-fluorocytosine.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app