Add like
Add dislike
Add to saved papers

Immobilization of a Full Photosystem in the Large-Pore MIL-101 Metal-Organic Framework for CO 2 reduction.

ChemSusChem 2018 July 7
A molecular catalyst [Cp*Rh(4,4'-bpydc)]2+ and a molecular photosensitizer [Ru(bpy)2 (4,4'-bpydc)]2+ (bpydc=bipyridinedicarboxylic acid) were co-immobilized into the highly porous metal-organic framework MIL-101-NH2 (Al) upon easy postsynthetic impregnation. The Rh-Ru@MIL-101-NH2 composite allows the reduction of CO2 under visible light, while exhibiting remarkable selectivity with the exclusive production of formate. This Rh-Ru@MIL-101-NH2 solid represents the first example of MOFs functionalized with both a catalyst and a photosensitizer in a noncovalent fashion. Thanks to the coconfinement of the catalyst and photosensitizer into the cavity's nanospace, the MOF pores are used as nanoreactors and enable molecular catalysis in a heterogeneous manner.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app