Add like
Add dislike
Add to saved papers

Novel magnetic ion-imprinted polymer: an efficient polymeric nanocomposite for selective separation and determination of Pb ions in aqueous media.

A novel ion-imprinted polymer (IIP) toward Pb(II) recognition was synthesized on the surface of magnetic multi-walled carbon nanotubes (magnetic MWCNTs). In order to prepare magnetic functionalized-MWCNT/IIP (magnetic f-MWCNT/IIP), copolymerization of methylenebisacrylamide (MBAm) and acrylamide (AM) in the presence of dithizone-Pb(II) complex was carried out on the surface of the magnetic f-MWCNTs. Selectivity of the new synthesized sorbent toward Pb(II) and the influence of a variety of foreign ions on the recognition, preconcentration, and removal of Pb(II) were evaluated using adsorption experiments in aqueous solution. The synthesized sorbent exhibited a good affinity with high adsorption capacity (Q = 80.81 mg/g) and an excellent selectivity toward Pb(II) in comparison with other common cations including alkaline, alkaline earth, and transition metals such as Na+ , K+ , Mg2+ , Ca2+ , Cd2+ , and Ni2+ . The parameters such as adsorption and desorption time, adsorption capacity, effect of the sorbent mass, eluent type, concentration and volume, and also pH of the solutions were investigated. The result demonstrated that the proposed sorbent provided a fast removal and higher maximum binding capacity compared to other reported synthesized sorbents. The characteristics of the magnetic f-MWCNT/IIP were analyzed using Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), X-ray diffraction (XRD), energy-dispersive spectroscopy (EDS), vibrating sample magnetometer (VSM), and elemental analysis (EA). Graphical abstract ᅟ.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app