Add like
Add dislike
Add to saved papers

Early growth response factor-1 DNA enzyme 1 inhibits the formation of abdominal aortic aneurysm in rats.

The aim of the present study was to characterize the effects of early growth response factor-1 DNA enzyme (EDRz) in a rat abdominal aortic aneurysm (AAA) model to determine the mechanism by which EDRz inhibits AAA and affects the formation of AAA by regulating the activity of matrix metalloproteinase (MMP)-2 and MMP-9. EDRz was transfected into the abdominal aorta of rats using the jetPRIME transfection reagent following infusion with elastase. Fluorescent microscopy, hematoxylin and eosin staining, ultrastructural analysis, reverse transcription-quantitative polymerase chain reaction, western blotting and immunohistochemical analysis were performed to characterize the response to EDRz. The EDRz group showed minimal aneurysm formation when compared with the control group, with significantly lower aortic diameter expansion (2.5±0.1 vs. 3.5±0.1 mm; P<0.05). Early growth response factor 1 (Egr-1) mRNA and protein levels were significantly decreased in the EDRz group, as expected. The decrease in Egr-1 was accompanied by decreases in the mRNA and protein levels of MMP-2 and MMP-9 (P<0.05). Transfection of the Egr-1 specific synthetic DNA enzyme EDRz significantly reduced AAA following elastase infusion in rats, at least in part due to the decreased expression of downstream MMP-2 and MMP-9.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app