Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Tetrahydrocurcumin ameliorates free fatty acid-induced hepatic steatosis and improves insulin resistance in HepG2 cells.

Elevated levels of free fatty acids (FFAs) in the liver, resulting from either increased lipolysis or imbalanced FFAs flux, is a key pathogenic factor of hepatic steatosis. This study was conducted to examine the therapeutic effect of tetrahydrocurcumin (THC), a naturally occurring curcuminoid and a metabolite of curcumin, on oleic acid (OA)-induced steatosis in human hepatocellular carcinoma cells and to elucidate the underlying mechanism. HepG2 cells were incubated with OA to induce steatosis, and then treated with various concentrations of THC. The results showed that THC treatment significantly decreased lipid accumulation in OA-treated HepG2 cells, possibly, by inhibiting the expression of the lipogenic proteins, sterol regulatory element-binding protein 1 (SREBP-1c), peroxisome proliferator-activated receptor gamma (PPARγ), fatty acid synthase (FAS), and fatty acid-binding protein 4 (FABP4). Moreover, THC attenuated OA-induced hepatic lipogenesis in an adenosine monophosphate-activated protein kinase (AMPK)-dependent manner, which was reversed by pretreatment with an AMPK inhibitor. THC promoted lipolysis and upregulated the expression of genes involved in β-oxidation. Glucose uptake and insulin signaling impaired in HepG2 cells incubated with OA were abated by THC treatment, including phosphorylation of the insulin receptor substrate 1 (IRS-1)/phosphoinositide 3-kinase (PI3K)/Akt and downstream signaling pathways, forkhead box protein O1 (FOXO1) and glycogen synthase kinase 3 β (GSK3β), which are involved in gluconeogenesis and glycogen synthesis, respectively. Altogether, these results demonstrated the novel therapeutic benefit of THC against hepatic steatosis and, consequently, a potential treatment for non-alcoholic fatty liver disease (NAFLD).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app