Add like
Add dislike
Add to saved papers

Probing Intermolecular Interactions within the Amyloid β Trimer Using a Tethered Polymer Nanoarray.

Bioconjugate Chemistry 2018 August 16
Amyloid oligomers are considered the most neurotoxic species of amyloid aggregates. Spontaneous assembly of amyloids into aggregates is recognized as a major molecular mechanism behind Alzheimer's disease and other neurodegenerative disorders involving protein aggregation. Characterization of such oligomers is extremely challenging but complicated by their transient nature. Previously, we introduced a flexible nanoarray (FNA) method enabling us to probe dimers assembled by the amyloid β (14-23) [Aβ (14-23)] peptide. The study presented herein modifies and enhances this approach to assemble and probe trimers of Aβ (14-23). A metal-free click chemistry approach was used, in which dibenzocyclooctyne (DBCO) groups were incorporated at selected sites within the FNA template to click Aβ (14-23) monomers at their terminal azide groups. Atomic force microscopy (AFM) force spectroscopy was employed to characterize the assemblies. The force measurement data demonstrate that the dissociation of the trimer undergoes a stepwise pattern, in which the first monomer dissociates at the rupture force ∼48 ± 2.4 pN. The remaining dimer ruptures at the second step at a slightly larger rupture force (∼53 ± 3.2 pN). The assembled trimer was found to be quite dynamic, and transient species of this inherently dynamic process were identified.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app