Add like
Add dislike
Add to saved papers

Quantum theory of mass potentials.

Probabilistic formalism of quantum mechanics is used to quantitatively link the global scale mass potential with the underlying electrical activity of excitable cells. Previous approaches implemented methods of classical physics to reconstruct the mass potential in terms of explicit physical models of participating cells and the volume conductor. However, the multiplicity of cellular processes with extremely intricate mixtures of deterministic and random factors prevents the creation of consistent biophysical parameter sets. To avoid the uncertainty inherent in physical attributes of cell ensembles, we undertake here a radical departure from deterministic equations of classical physics, instead applying the probabilistic reasoning of quantum mechanics. Crucial steps include: (1) the relocation of the elementary bioelectric sources from a cellular to a molecular level; (2) the creation of microscale particle models in terms of a non-homogenous birth-and-death process. To link the microscale processes with macroscale potentials, time-frequency analysis was applied for estimation of the empirical characteristic functions for component waveforms of electroencephalogram (EEG), eye-blink electromyogram (EMG), and electrocardiogram (ECG). We describe universal models for the amplitude spectra and phase functions of functional components of mass potentials. The corresponding time domain relationships disclose the dynamics of mass potential components as limit distribution functions produced by specific microscale transients. The probabilistic laws governing the microscale machinery, founded on an empirical basis, are presented. Computer simulations of particle populations with time dependent transition probabilities reveal that hidden deterministic chaos underlies development of the components of mass potentials. We label this kind of behaviour "transient deterministic chaos".

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app