Add like
Add dislike
Add to saved papers

Impact of new ICRU Report 90 recommendations on calculated correction factors for reference dosimetry.

In 2016 the ICRU published a new report dealing with key data for ionizing radiation dosimetry (ICRU Report 90). New recommendations have been made for the mean excitation energies I for air, graphite and liquid water as well as for the graphite density to use when evaluating the density effect. In addition, the ICRU Report 90 discusses renormalized photoelectric cross sections, but refuses to give a recommendation on the use of renormalization factors. However, the Consultative Committee for Ionizing Radiation recommends to use renormalized photoeffect cross sections. Goal of the present work is to evaluate the impact of these new recommendations on clinical reference dosimetry for high energy photon and electron beams. The beam quality correction factor k Q was calculated by Monte Carlo simulations for compact and parallel plate ionization chambers. In case of photons seven phase space files from clinical accelerators and twelve spectra taken from literature from 4 MV to 24 MV and additionally a 60 Co source were applied. As electron source thirteen electron spectra available in literature were used in the range of 4 MeV-21 MeV. The new ICRU recommendations have a small impact on Monte Carlo calculated k Q values for the chosen ionization chambers in the range of 0.1%-0.35% only-the difference increases for higher photon energies. The impact of the ICRU Report 90 recommendations on Monte Carlo calculated stopping power ratios s w,a , perturbation factors p and beam quality correction factors k Q was investigated and confirmed a decrese of s w,a by a fraction of a percent for photon and electron beams. This study indicates that the impact of the new ICRU recommendation is within 0.35%. The determined deviations should be taken into account, when widely published Monte Carlo calculated values are examined.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app