Add like
Add dislike
Add to saved papers

Imidazole dipeptides can quench toxic 4-oxo-2(E)-nonenal: Molecular mechanism and mass spectrometric characterization of the reaction products.

Imidazole dipeptides, such as carnosine (β-alanyl-l-histidine) and anserine (β-alanyl-Nπ -methyl-l-histidine), are highly localized in excitable tissues, including skeletal muscle and nervous tissue, and play important roles such as scavenging reactive oxygen species and quenching reactive aldehydes. We have demonstrated several reactions between imidazole dipeptides (namely, carnosine, and anserine) and a lipid peroxide-derived reactive aldehyde 4-oxo-2(E)-nonenal. Seven carnosine adducts and two anserine adducts were characterized using liquid chromatography/electrospray ionization-multiple-stage mass spectrometry. Adduct formation occurred between imidazole dipeptides and 4-oxo-2(E)-nonenal mainly through Michael addition, Schiff base formation, and/or Paal-Knorr reaction. The reactions were much more complicated than the reaction with a similar lipid peroxide-derived reactive aldehyde, 4-hydroxy-2(E)-nonenal.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app