CLINICAL TRIAL, VETERINARY
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Comparative plasma and interstitial fluid pharmacokinetics and tissue residues of ceftiofur crystalline-free acid in cattle with induced coliform mastitis.

Ceftiofur (CEF) is a third-generation cephalosporin that is the most widely used antimicrobial in the dairy industry. Currently, violative meat residues in cull dairy cattle are commonly associated with CEF. One potential cause for violative residues is altered pharmacokinetics of the drug due to disease, which could increase the time needed for the residue to deplete. The objectives of this study were (a) to determine the absolute bioavailability of CEF crystalline-free acid (CFA) in healthy versus diseased cows; (b) to compare the plasma and interstitial fluid pharmacokinetics and plasma protein binding of CEF between healthy dairy cows and those with disease; and (c) to determine the CEF residue profile in tissues of diseased cows. For this trial, disease was induced through intramammary Escherichia coli infusion. Following disease induction and CEF CFA administration, for plasma concentrations, there was not a significant effect of treatment (p = 0.068), but the treatment-by-time interaction (p = 0.005) was significant. There was a significantly greater concentration of CEF in the plasma of the DIS cows at T2 hr (p = 0.002), T8 hr (p < 0.001), T12 hr (p = 0.001), and T16 hr (p = 0.002). For PK parameters in plasma, the slope of the terminal phase of the concentration versus time curve was significantly lower (p = 0.007), terminal half-life was significantly longer (p = 0.014), and apparent volume of distribution during the elimination phase was significantly higher (p = 0.028) diseased group. There was no difference in plasma protein binding of CEF and interstitial fluid pharmacokinetics. None of the cows had kidney CEF residues above the US tolerance level following observation of the drug's withdrawal period, but one cow with a larger apparent volume of distribution and longer terminal half-life had tissue residues slightly below the tolerance. Whereas these findings do not support the hypothesis that severely ill cows need longer withdrawal times, alterations in the terminal half-life suggest that it is theoretically possible.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app