Add like
Add dislike
Add to saved papers

Bacterial expression, purification and biophysical characterization of the smallest plant reticulon isoform, RTNLB13.

Reticulons are a large family of integral membrane proteins that are ubiquitous in eukaryotes and play a key role in functional remodelling of the endoplasmic reticulum membrane. The reticulon family is especially large in plants, with the Arabidopsis thaliana genome containing twenty-one isoforms. Reticulons vary in length but all contain a conserved C-terminal reticulon homology domain (RHD) that associates with membranes. An understanding of the structure and membrane interactions of RHDs is key to unlocking their mechanism of function, however no three-dimensional structure has been solved. We believe that this is, in part, due to difficulties in obtaining reticulon proteins in yields sufficient for structural study. To address this, we report here the first bacterial overexpression, purification, and biophysical investigation of a reticulon protein from plants, the RTNLB13 protein from A. thaliana. RTNLB13 is the smallest plant reticulon and is made up of a single RHD. We used circular dichroism, SDS-PAGE and analytical ultracentrifugation to reveal that RTNLB13 is 45% α-helical in a number of detergent environments, monomeric at low concentrations, and capable of self-association at higher concentrations. We used solution-state NMR to screen the effect of detergent type on the fold of isotopically-enriched RTNLB13, and found that ∼60% of the expected protein peaks were broadened due to slow dynamics. This broadening points toward a large network of protein-membrane interactions throughout the sequence. We have interpreted our results in light of current literature and suggest a preliminary description of RTNLB13 structure and topology.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app