Add like
Add dislike
Add to saved papers

Oxytocin modulates the expression of norepinephrine transporter, β 3 -adrenoceptors and muscarinic M 2 receptors in the hearts of socially isolated rats.

Peptides 2018 June 31
Social stress produces behavioral alterations, and autonomic and cardiac dysfunction in animals. In addition to the well-known roles of oxytocin on birth and maternal bonding, recent evidence shows that this neuropeptide possesses cardio-protective properties. However less is known about its role in the regulation of the autonomic nervous system. The direct influence of oxytocin on the cardiac catecholamine synthesizing enzyme, transport beta-adrenoceptors and muscarinic receptors in animals exposed to chronic social isolation stress has not yet been studied. In this study, we examined the influence of peripheral chronic oxytocin treatment on anxiety-related behavior, the morphology and content of epinephrine and norepinephrine, mRNA and protein levels of tyrosine hydroxylase (TH), norepinephrine transporter (NET) and receptors <beta> 3 (β3 -AR) and muscarinic 2 (M2 MR) in the right and left cardiac atrium and ventricle of chronically socially isolated male rats. Our results show that oxytocin treatment exhibits an anxiolytic effect, decreases the heart/body weight ratio and prevents the hypertrophy of cardiomyocytes in the wall of the left ventricle of stressed rats. Epinephrine and TH protein levels were unchanged after prolonged oxytocin treatment. Peripheral oxytocin administration led to the enhancement of gene expression of β3 -AR in both atria, NET protein in the left ventricle and gene expression of M2 MR in the right atrium and the left ventricle of chronically socially isolated rats. The study provides evidence that oxytocin treatment in chronically socially isolated animals enhances norepinephrine uptake and expression of cardio-inhibitory receptors in cardiac tissues, which could have a beneficial effect on the cardiovascular system under the increased activity of the sympathoneural system.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app