Add like
Add dislike
Add to saved papers

Increasing the Antimicrobial Activity of Amphiphilic Cationic Copolymers by the Facile Synthesis of High Molecular Weight Stars by Supplemental Activator and Reducing Agent Atom Transfer Radical Polymerization.

Biomacromolecules 2019 March 12
Infections caused by bacteria represent a great motif of concern in the health area. Therefore, there is a huge demand for more efficient antimicrobial agents. Antimicrobial polymers have attracted special attention as promising materials to prevent infectious diseases. In this study, a new polymeric system exhibiting antimicrobial activity against a range of Gram-positive and Gram-negative bacterial strains at micromolar concentrations (e.g., 0.8 μM) was developed. Controlled linear and star-shaped copolymers, comprising hydrophobic poly(butyl acrylate) (PBA) and cationic poly(3-acrylamidopropyl)trimethylammonium chloride) (PAMPTMA) segments, were obtained by supplemental activator and reducing agent atom transfer radical polymerization (SARA ATRP) at 30 °C. The antibacterial activity of the polymers was studied by varying systematically the molecular weight (MW), hydrophilic/hydrophobic balance, and architecture. The MW was found to exert the greatest influence on the antimicrobial activity of the polymers, with minimum inhibitory concentration values decreasing with increasing MW. Live/dead membrane integrity assays and scanning electron microscopy analysis confirmed the bactericidal character of the synthesized PAMPTMA- (b)co-PBA polymers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app