Add like
Add dislike
Add to saved papers

Sandwich DNA Hybridization Fluorescence Resonance Energy-Transfer Strategy for miR-122 Detection by Core-Shell Upconversion Nanoparticles.

An upconversion nanoparticle (UCNP)-based fluorescence resonance energy-transfer (FRET) strategy is normally restricted by the complicated preparations, low energy-transfer efficiency, and the challenge on improving specificity. Herein, simple DNA-functionalized UCNPs were designed as energy donors for constructing a FRET-based probe to detect the liver-specific microRNA 122 (miR-122). To improve FRET efficiency, UCNPs were constructed with confined core-shell structures, in which emitting ions were precisely located in the thin shell to make them close enough to external energy acceptors. Subsequently, capture DNA was simply functionalized on the outer surface of UCNPs based on ligand exchange that contributed to shortening the energy-transfer distance without extra modification. To gain high specificity, the donor-to-acceptor distance of FRET was controlled by a sandwich DNA hybridization structure using two shorter DNAs with designed complementary sequences (capture DNA and dye-labeled report DNA) to capture the longer target of miR-122. Therefore, the sensitive detection of miR-122 was achieved based on the decreased signals of UCNPs and the increased signals of the dye labeled on reported DNA. With good biocompatibility, this method has been further applied to cancer cell imaging and in vivo imaging, which opened up a new avenue to the sensitive detection and imaging of microRNA in biological systems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app