Add like
Add dislike
Add to saved papers

Design of a phosphinate-based bioluminescent probe for superoxide radical anion imaging in living cells.

Superoxide radical anion (O2 ˙- ) as an important member of reactive oxygen species (ROS) plays a vital role both in physiology and pathology. Herein we designed and synthesized a novel phosphinate-based bioluminescence probe for O2 ˙- detection in living cells, which exhibited good sensitivity for capturing O2 ˙- at the nanomole level and high selectivity against other ROS. The probe was further found to be of low toxicity for living cells and was then successfully employed for sensing endogenous O2 ˙- by using phorbol-12-myristate-13-acetate (PMA) as a traditional O2 ˙- stimulator in Huh7 cells. Moreover, the increasing production and use of nanoparticles, has given rise to many concerns and debates among the public and scientific authorities regarding their safety and final fate in biological systems. Herein it was found that mondisperse polystyrene particles could stimulate O2 ˙- generation in Huh7 cells. Overall, the probe was demonstrated to have a great potential as a novel bioluminescent sensor for detecting O2 ˙- in living cells. To our knowledge, this is the first small-molecule phosphinate-based bioluminescence probe that will open up great opportunities for unlocking the mystery of O2 ˙- in human health and disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app