Add like
Add dislike
Add to saved papers

High-shear granulation of high-molecular weight hypromellose: effects of scale-up and process parameters on flow and compaction properties.

CONTEXT: Knowledge of the effects of high-shear granulation process parameters and scale-up on the properties of the produced granules is essential for formulators who face challenges regarding poor flow and compaction during development of modified release tablets based on high-molecular weight hypromellose (hydroxypropylmethylcellulose (HPMC)) polymers. Almost none of the existing studies deal with realistic industrial formulation.

OBJECTIVE: The aim was to investigate the effects of scale-up and critical process parameters (CPPs) of high-shear granulation on the quality attributes of the granules, particularly in terms of the flow and compaction, using a realistic industrial formulation based on HPMC K100M polymer.

METHODS: The flow properties were determined using flow time, Carr index, tablet mass, and crushing strength variations. The compaction properties were quantified using the 'out-of-die' Heckel and modified Walker models, as well as the tensile strength profile and elastic recovery. High-shear granulation was performed at different scales: 4 L, 300 L, and 600 L.

RESULTS AND CONCLUSION: The scale itself had larger effects on the granule properties than the CPPs, which demonstrated high robustness of formulation on the individual scale level. Nevertheless, to achieve the desired flow and compaction, the values of the CPPs need to be precisely selected to fine-tune the process conditions. The best flow was achieved at high volumes of water addition, where larger and more spherical granules were obtained. The CPPs showed negligible influence on the compaction with no practical implications, however, the volume of water addition volume was identified as having the largest effects on compaction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app