Add like
Add dislike
Add to saved papers

A multiscale computational modeling for cerebral blood flow with aneurysms and/or stenoses.

A 1-dimensional (1D)-3-dimensional (3D) multiscale model for the human vascular network was proposed by combining a low-fidelity 1D modeling of blood circulation to account for the global hemodynamics with a detailed 3D simulation of a zonal vascular segment. The coupling approach involves a direct exchange of flow and pressure information at interfaces between the 1D and 3D models and thus enables patient-specific morphological models to be inserted into flow network with minimum computational efforts. The proposed method was validated with good agreements against 3 simplified test cases where experimental data and/or full 3D numerical solution were available. The application of the method in aneurysm and stenosis studies indicated that the deformation of the geometry caused by the diseases may change local pressure loss and as a consequence lead to an alteration of flow rate to the vessel segment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app