Journal Article
Research Support, Non-U.S. Gov't
Review
Add like
Add dislike
Add to saved papers

Ecology and evolution of seafloor and subseafloor microbial communities.

Vast regions of the dark ocean have ultra-slow rates of organic matter sedimentation, and their sediments are oxygenated to great depths yet have low levels of organic matter and cells. Primary production in the oxic seabed is supported by ammonia-oxidizing archaea, whereas in anoxic sediments, novel, uncultivated groups have the potential to produce H2 and CH4 , which fuel anaerobic carbon fixation. Subseafloor bacteria have very low mutation rates, and their evolution is likely dominated by selection of different pre-adapted subseafloor taxa under oxic and anoxic conditions. In addition, the abundance and activity of viruses indicate that they affect the size, structure and selection of subseafloor communities. This Review highlights how microbial communities survive in the unique, nutrient-poor and energy-starved environment of the seabed, where they have the potential to influence global biochemical cycles.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app