Add like
Add dislike
Add to saved papers

Crystal-Face Tailored Graphitic Carbon Nitride Films for High-Performance Photoelectrochemical Cells.

ChemSusChem 2018 August 10
Graphitic carbon nitride (g-CN) has been widely studied as a promising candidate for water splitting, owing to its metal-free nature, moderate band gap, and low cost. However, its photocurrent density is still very low for photoelectrochemical cell applications. In this work, a crystal face tailored g-CN photoelectrode has been fabricated by a facile thermal vapor deposition method. We use the melamine formaldehyde resin as a new precursor and have successfully fabricated g-CN films. The intensity ratio between two typical peaks (100) and (001) of g-CN is very different from that in the existing literature. The water splitting photocurrent density is as high as 228.2 μA cm-2 , which is 126.8 times higher than pure g-CN (1.8 μA cm-2 ) at 1.23 V vs. reversible hydrogen electrodes under one sun illumination without sacrificial reagents and co-catalysts. The electrode shows the best performance, compared with the previously reported g-CN photoelectrodes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app