Add like
Add dislike
Add to saved papers

Interrogation of spatial metabolome of Ginkgo biloba with high-resolution matrix-assisted laser desorption/ionization and laser desorption/ionization mass spectrometry imaging.

Ginkgo biloba is one of the oldest extant seed plants and has a number of unique properties and uses. Numerous efforts have characterized metabolites within the ginkgo plant and their corresponding biosynthesis pathways, but spatio-chemical information on ginkgo metabolites is lacking. Mass spectrometry (MS) imaging was used to interrogate the spatio-chemical localization of metabolites with matrix-assisted laser desorption/ionization and laser desorption/ionization Fourier-transform ion cyclotron resonance MS across the ginkgo leaf. Flavonoids, particularly unexpected and rare flavonoid cyclodimers, were detected predominately from leaf epidermis; ginkgolic acids and cardanols were observed exclusively in the secretory cavities. A non-uniform distribution of flavonoids observed between the upper and lower leaf epidermis was verified by liquid chromatography-MS analyses. Other metabolites, such as saccharides, phospholipids, and chlorophylls, occurred mainly in mesophyll cells. Furthermore, organ- and tissue-specific distributions of ginkgolides were revealed in the ginkgo root, young stem, and leaf. The acquired ion images provide important information regarding biosynthesis, transportation, and accumulation of metabolites throughout the ginkgo plant and should help us to understand the physiological roles of several plant secondary metabolites.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app