Add like
Add dislike
Add to saved papers

In vitro and in vivo investigation of PLA/PCL scaffold coated with metformin-loaded gelatin nanocarriers in regeneration of critical-sized bone defects.

Large bone defects constitute a major challenge in bone tissue engineering and usually fail to heal due to the incomplete differentiation of recruited mesenchymal stem cells (MSCs) into osteogenic precursor cells. As previously proposed, metformin (MET) induces differentiation of MSCs into osteoblastic lineages in vitro. We fabricated a Poly (lactic acid) and Polycaprolactone (PLA/PCL) scaffold to deliver metformin loaded gelatin nanocarriers (MET/GNs) to critical-sized calvarial bone defects in a rat model. The scaffolds were evaluated regarding their morphology, porosity, contact angle, degradation rate, blood compatibility, biomechanical, cell viability and their osteogenic differentiation. In animal study, the defects were filled with autograft, scaffolds and a group was left empty. qRT-PCR analyses showed the expression level of osteogenic and angiogenic markers considerably increased in MET/GNs-PLA/PCL. The in vivo results showed that MET/GNs-PLA/PCL improved bone ingrowth, angiogenesis and defect reconstruction. Our results represent the applicability of MET/GNs-PLA/PCL for successful bone regeneration.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app