Add like
Add dislike
Add to saved papers

Convolutional neural network-based image enhancement for x-ray percutaneous coronary intervention.

Percutaneous coronary intervention (PCI) uses x-ray images, which may give high radiation dose and high concentrations of contrast media, leading to the risk of radiation-induced injury and nephropathy. These drawbacks can be reduced by using lower doses of x-rays and contrast media, with the disadvantage of noisier PCI images with less contrast. Vessel-edge-preserving convolutional neural networks (CNN) were designed to denoise simulated low x-ray dose PCI images, created by adding artificial noise to high-dose images. Objective functions of the designed CNNs have been optimized to achieve an edge-preserving effect of vessel walls, and the results of the proposed objective functions were evaluated qualitatively and quantitatively. Finally, the proposed CNN-based method was compared with two state-of-the-art denoising methods: K-SVD and block-matching and 3D filtering. The results showed promising performance of the proposed CNN-based method for PCI image enhancement with interesting capabilities of CNNs for real-time denoising and contrast enhancement tasks.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app