Add like
Add dislike
Add to saved papers

Event-Based, Timescale Invariant Unsupervised Online Deep Learning With STDP.

Learning of hierarchical features with spiking neurons has mostly been investigated in the database framework of standard deep learning systems. However, the properties of neuromorphic systems could be particularly interesting for learning from continuous sensor data in real-world settings. In this work, we introduce a deep spiking convolutional neural network of integrate-and-fire (IF) neurons which performs unsupervised online deep learning with spike-timing dependent plasticity (STDP) from a stream of asynchronous and continuous event-based data. In contrast to previous approaches to unsupervised deep learning with spikes, where layers were trained successively, we introduce a mechanism to train all layers of the network simultaneously. This allows approximate online inference already during the learning process and makes our architecture suitable for online learning and inference. We show that it is possible to train the network without providing implicit information about the database, such as the number of classes and the duration of stimuli presentation. By designing an STDP learning rule which depends only on relative spike timings, we make our network fully event-driven and able to operate without defining an absolute timescale of its dynamics. Our architecture requires only a small number of generic mechanisms and therefore enforces few constraints on a possible neuromorphic hardware implementation. These characteristics make our network one of the few neuromorphic architecture which could directly learn features and perform inference from an event-based vision sensor.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app