Add like
Add dislike
Add to saved papers

Comparison of Filtered Back Projection, Hybrid Iterative Reconstruction, Model-Based Iterative Reconstruction, and Virtual Monoenergetic Reconstruction Images at Both Low- and Standard-Dose Settings in Measurement of Emphysema Volume and Airway Wall Thickness: A CT Phantom Study.

Objective: To evaluate the accuracy of emphysema volume (EV) and airway measurements (AMs) produced by various iterative reconstruction (IR) algorithms and virtual monoenergetic images (VME) at both low- and standard-dose settings.

Materials and Methods: Computed tomography (CT) images were obtained on phantom at both low- (30 mAs at 120 kVp) and standard-doses (100 mAs at 120 kVp). Each CT scan was reconstructed using filtered back projection, hybrid IR (iDose4 ; Philips Healthcare), model-based IR (IMR-R1, IMR-ST1, IMR-SP1; Philips Healthcare), and VME at 70 keV (VME70). The EV of each air column and wall area percentage (WA%) of each airway tube were measured in all algorithms. Absolute percentage measurement errors of EV (APEvol ) and AM (APEWA% ) were then calculated.

Results: Emphysema volume was most accurately measured in IMR-R1 (APEvol in low-dose, 0.053 ± 0.002; APEvol in standard-dose, 0.047 ± 0.003; all p < 0.001) and AM was the most accurate in IMR-SP1 on both low- and standard-doses CT (APEWA% in low-dose, 0.067 ± 0.002; APEWA% in standard-dose, 0.06 ± 0.003; all p < 0.001). There were no significant differences in the APEvol of IMR-R1 between low- and standard-doses (all p > 0.05). VME70 showed a significantly higher APEvol than iDose4 , IMR-R1, and IMR-ST1 (all p < 0.004). VME70 also showed a significantly higher APEWA% compared with the other algorithms (all p < 0.001).

Conclusion: IMR was the most accurate technique for measurement of both EV and airway wall thickness. However, VME70 did not show a significantly better accuracy compared with other algorithms.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app