Add like
Add dislike
Add to saved papers

Natural and synthetic flavonoids, novel blockers of the volume-regulated anion channels, inhibit endothelial cell proliferation.

Natural flavonoids are ubiquitous in dietary plants and vegetables and have been proposed to have antiviral, antioxidant, cardiovascular protective, and anticancer effects. Volume-regulated anion channels (VRACs), which are essential for cell volume regulation, have been proposed to play a key role in cell proliferation and migration, apoptosis, transepithelial transport, and cancer development. In this study, we screened a group of 53 structurally related natural flavonoids and three synthetic flavonoids for their inhibitory activities on VRAC currents. A whole-cell patch technique was used to record VRAC currents in the human embryonic kidney (HEK) 293 and human umbilical vein endothelial (HUVEC) cells. The 5'-bromo-2-deoxyuridine (BrdU) assay technique was used to investigate cell proliferation. At 100 μM, 34 of 53 compounds significantly inhibited hypotonic extrasolution-induced VRAC currents by > 50% in HEK293 cells. Among these compounds, luteolin, baicalein, eupatorin, galangin, quercetin, fisetin, karanjin, Dh-morin, genistein, irisolidone, and prunetin exhibited the highest efficacy for VRAC blockade (the mean inhibition > 80%) with IC50 s of 5-13 μM and Emax s of about 87-99%. We also studied the effects of three synthetic flavonoids on VRAC currents in HEK293 cells. Flavoxate showed high inhibition efficacy toward VRAC currents (IC50  = 2.3 ± 0.3 μM; Emax  = 91.8% ± 2.7%). Finally, these flavonoids inhibited endogenous VRAC currents and cell proliferation in endothelial cells. This study demonstrates that natural and synthetic flavonoids are potent VRAC current inhibitors, and VRAC inhibition by flavonoids might be responsible for their anti-angiogenic effects.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app