Add like
Add dislike
Add to saved papers

Understanding deep-water striation patterns and predicting the waveguide invariant as a distribution depending on range and depth.

The Waveguide Invariant (WI) theory has been introduced to quantify the orientation of the intensity interference patterns in a range-frequency domain. When the sound speed is constant over the water column, the WI is a scalar with the canonical value of 1. But, when considering shallow waters with a stratified sound speed profile, the WI ceases to be constant and is more appropriately described by a distribution, which is mainly sensitive to source/receiver depths. Such configurations have been widely investigated, with practical applications including passive source localization. However, in deep waters, the interference pattern is much more complex and variable. In fact the observed WI varies with source/receiver depth but it also varies very quickly with source-array range. In this paper, the authors investigate two phenomena responsible for this variability, namely the dominance of the acoustic field by groups of modes and the frequency dependence of the eigenmodes. Using a ray-mode approach, these two features are integrated in a WI distribution derivation. Their importance in deep-water is validated by testing the calculated WI distribution against a reference distribution directly measured on synthetic data. The proposed WI derivation provides a thorough way to predict and understand the striation patterns in deep-water context.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app