Add like
Add dislike
Add to saved papers

Synaptic Mitochondria are More Susceptible to Traumatic Brain Injury-induced Oxidative Damage and Respiratory Dysfunction than Non-synaptic Mitochondria.

Neuroscience 2018 August 22
Traumatic brain injury (TBI) results in mitochondrial dysfunction and induction of lipid peroxidation (LP). Lipid peroxidation-derived neurotoxic aldehydes such as 4-HNE and acrolein bind to mitochondrial proteins, inducing additional oxidative damage and further exacerbating mitochondrial dysfunction and LP. Mitochondria are heterogeneous, consisting of both synaptic and non-synaptic populations. Synaptic mitochondria are reported to be more vulnerable to injury; however, this is the first study to characterize the temporal profile of synaptic and non-synaptic mitochondria following TBI, including investigation of respiratory dysfunction and oxidative damage to mitochondrial proteins between 3 and 120 h following injury. These results indicate that synaptic mitochondria are indeed the more vulnerable population, showing both more rapid and severe impairments than non-synaptic mitochondria. By 24 h, synaptic respiration is significantly impaired compared to synaptic sham, whereas non-synaptic respiration does not decline significantly until 48 h. Decreases in respiration are associated with increases in oxidative damage to synaptic and non-synaptic mitochondrial proteins at 48 h and 72 h, respectively. These results indicate that the therapeutic window for mitochondria-targeted pharmacological neuroprotectants to prevent respiratory dysfunction is shorter for the more vulnerable synaptic mitochondria than for the non-synaptic population.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app